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Abstract

Sensitivity analysis for DAE systems is important in many engineering and scienti�c applications. The information
contained in the sensitivity trajectories is useful for parameter estimation, optimization, model reduction and experimental
design. In this paper we present algorithms and software for sensitivity analysis of large-scale DAE systems of index up
to two. The new software provides for consistent initialization of the solutions and the sensitivities, interfaces seamlessly
with automatic di�erentiation for the accurate evaluation of the sensitivity equations, and is capable via MPI of exploit-
ing the natural parallelism of sensitivity analysis as well as providing an e�cient solution in sequential computations.
c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

This paper is concerned with the solution and sensitivity analysis of initial value problems for
di�erential–algebraic equation systems (DAEs) in the general form

F(t; y; y′) = 0; (1)

where F; y, and y′ are N -dimensional vectors. A number of powerful solvers have been written for
the solution of DAEs, including RADAU5 [9], SPRINT [1], PSIDE [17], DASSL [3] and DASPK
[4]. Many of these solvers are compared in [13], where it was found that DASSL=DASPK works very
well compared with other methods and can solve a broader class of problems than the other codes
tested. Several methods and codes have been designed in the last decade to compute sensitivities for
DAEs [14,6]. In this paper we outline the algorithms and issues for sensitivity analysis of large-scale
DAE systems, describe our new software DASPK3.0 for these problems and present some numerical
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examples illustrating the e�ectiveness of this approach. The sensitivity algorithms presented here
are applicable to most solvers. We have based our software on DASPK so as to make use of the
excellent properties, particularly for large-scale systems, of this powerful and widely used code.
We begin by giving some background in Section 2 on the basic algorithms used in the DAE

solver DASSL and its extension DASPK for large-scale DAE systems. In Section 3 we describe
three algorithms for sensitivity analysis of DAEs using a direct approach. These are the staggered
direct method [6], simultaneous corrector method [14] and staggered corrector method [8]. Accurate
evaluation of the sensitivity residuals is an important problem; an adaptive increment �nite di�erence
method is presented, and methods for computing residuals via automatic di�erentiation are described.
In Section 4 we present methods for determining consistent initial conditions for several classes
of index-0, index-1 and index-2 DAEs and the associated sensitivities. The methods, which are
new for index-2 DAEs, have the important property that they can be implemented with very little
additional information required from the user. In Section 5, several issues which are critical for a
robust and e�cient implementation of sensitivity analysis are explored, along with their resolution
in DASPK3.0. These include the error and convergence tests and formulation of the Krylov method
for sensitivity analysis. The method used for parallelization in DASPK3.0 is described in Section 6.
Finally, numerical experiments illustrating the e�ectiveness of this approach on both sequential and
parallel computers are given in Section 7.
Further details on the implementation and use of DASPK3.0 are given in [11]. DASPK3.0 is

available via “http:==www.engineering.ucsb.edu/˜ cse”.

2. Background – Algorithms in DASSL and DASPK

DASSL was developed by Petzold [3] and has become one of the most widely used software
packages for DAEs. DASSL uses backward di�erentiation formula (BDF) methods [3] to solve
a system of DAEs or ODEs. The methods are variable step size, variable order. The system of
equations is written in implicit ODE or DAE form as in (1). Following discretization by the BDF
methods, a nonlinear equation

F(t; y; �y + �) = 0 (2)

must be solved at each time step, where � = �0=hn is a constant which changes whenever the step
size or order changes, � is a vector which depends on the solution at past times, and t; y; �; � are
evaluated at tn. DASSL solves this equation by a modi�ed version of Newton’s method

y(m+1) = y(m) − c
(
�
@F
@y′ +

@F
@y

)−1
F(t; y(m); �y(m) + �); (3)

where the linear system is solved via a dense or banded direct solver. The iteration matrix

A= �
@F
@y′ +

@F
@y

is computed and factored and is then used for as many time steps as possible. The reader can refer
to [3] for more implementation details.
DASPK2.0 was developed by Brown et al. [4] for the solution of large-scale systems of DAEs. It

is particularly e�ective in the method-of-lines solution of time-dependent PDE systems in two and
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three dimensions. In contrast to DASSL, which is limited in its linear algebra to dense and banded
systems, DASPK2.0 is able to make use of the preconditioned GMRES iterative method [16] for
solving the linear system at each Newton iteration.
When solving DAEs, the integration must be started with a consistent set of initial conditions y0

and y′
0. This is a set of initial conditions which satisfy the algebraic constraints for the DAEs (and

for higher-index DAEs, the hidden constraints). The initialization algorithms in DASPK3.0 are new,
and will be discussed further in Section 4.

3. Sensitivity analysis of DAEs

3.1. Methods for sensitivity analysis

Several approaches have been developed to calculate sensitivity coe�cients [6,14]. Here we sum-
marize the direct methods for sensitivity analysis of ODEs and DAEs.
To illustrate the basic approach for sensitivity analysis, consider the general DAE system with

parameters,

F(t; y; y′; p) = 0; y(0) = y0; (4)

where y ∈ Rny ; p ∈ Rnp . Here ny is the number of time-dependent variables y as well as the
dimension of the DAE system, and np is the number of parameters in the original DAE system.
Sensitivity analysis entails �nding the derivative of the solution y with respect to each parameter.
This produces an additional ns=np ·ny sensitivity equations which, together with the original system,
yield

F(t; y; y′; p) = 0;

@F
@y
si +

@F
@y′ s

′
i +

@F
@p

= 0; i = 1; : : : ; np;
(5)

where si = dy=dpi. De�ning

Y =




y

s1
...

snp



; F =




F(t; y; p)

@F
@y
s1 +

@F
@y′ s

′
1 +

@F
@p1

...

@F
@y
snp +

@F
@y′ s

′
np +

@F
@pnp



;
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the combined system can be rewritten as

F(t; Y; Y ′; p) = 0; Y (0) =




y0
dy0
dp1
...

dy0
dpnp



:

This system can be solved by the kth order BDF formula with step size hn+1 to yield a nonlinear
system

G(Yn+1) = F
(
tn+1; Yn+1; Y

′(0)
n+1 −

�s
hn+1

(Yn+1 − Y (0)n+1); p
)
= 0; (6)

where Y (0)n+1 and Y
′(0)
n+1 are predicted values for Yn+1 and Y

′
n+1, which are obtained via polynomial

extrapolation of past values [3]. Also, �s is the �xed leading coe�cient which is de�ned in [3].
Newton’s method for the nonlinear system produces the iteration

Y (k+1)n+1 = Y (k)n+1 − J−1G(Y (k)n+1);

where

J =




J

J1 J

J2 0 J
...

...
...

. . .

Jnp 0 · · · 0 J




(7)

and

J = �
@F
@y′ +

@F
@y
; Ji =

@J
@y
si +

@J
@pi

and �= �s=hn+1.
There are three well-established methods to solve the nonlinear system (6):

• Staggered direct method, described in [6].
• Simultaneous corrector method, described in [14].
• Staggered corrector method, described in [8].
Analysis and comparison of the performance of these three methods have been given in [8,12].
Because the relative e�ciencies of the methods depend on the problem and on the number of
parameters, all of them were made available as options in DASPK3.0. Here we describe briey the
three methods.
The staggered direct method �rst solves Eq. (6) for the state variables. After the Newton iteration

for the state variables has converged, the sensitivity equations in (6) are updated with the most
recent values of the state variables. Because Eq. (8) is linear with a matrix J for the sensitivity
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equations, it is solved directly without Newton iteration. However, to solve the linear system in this
way requires computation and factorization of the Jacobian matrix at each step and also extra storage
for the matrix @F=@y′. Since the Jacobian is updated and factorized only when necessary in DASPK,
the additional matrix updates and factorizations may make the staggered direct method unattractive
compared to the other methods. However, if the cost of a function evaluation is more than the cost
of factorization of the Jacobian matrix and the number of sensitivity parameters is very large (see
[12]), the staggered direct method is more e�cient. We have modi�ed the implementation of [6] to
make the staggered direct method more reliable for ill-conditioned problems.
The simultaneous corrector method solves (6) as one whole nonlinear system, where Newton

iteration is used. The Jacobian matrix J in (7) is approximated by its block diagonal in the Newton
iteration. Thus, this method allows the factored corrector matrix to be reused for multiple steps.
It has been shown in [14] that the resulting iteration is two-step quadratically convergent for full
Newton, and convergent for modi�ed Newton iteration.
The staggered corrector method is similar to the staggered direct method. However, instead of

solving the linear sensitivity system directly, a Newton iteration is used

s(k+1)i = s(k)i − J−1Gsi(s(k)i ); (8)

where Gsi is the residual for the ith sensitivity and J is the factored Jacobian matrix which is used
in the Newton iteration for the state variables. Like the simultaneous corrector method, this method
does not require the factorization of the Jacobian matrix at each step. One of the advantages of
the staggered corrector method is that we do not need to evaluate the sensitivity equations during
the iteration of solving for the state variables. This can reduce the computation time if the state
variables require more iterations than the sensitivity variables. After solving for the state variables
in the corrector iteration, only the diagonal part of J in (7) is left. We can expect the convergence
of the Newton iteration will be improved over that of using an approximate iteration matrix in the
simultaneous corrector method. This has been observed in our numerical experiments.

3.2. Methods for evaluating sensitivity residuals

Several approaches have been developed to calculate the sensitivity residuals that may be used
with either the staggered corrector or the simultaneous corrector methods. Maly and Petzold [14]
used a directional derivative �nite di�erence approximation. For example, the ith sensitivity equation
may be approximated as

F(t; y + �isi; y′ + �is′i ; p+ �iei)− F(t; y; y′; p)
�i

= 0; (9)

where �i is a small scalar quantity, and ei is the ith unit vector. Proper selection of the scalar �i is
crucial to maintaining acceptable round-o� and truncation error levels [14]. If F(t; y; y′; p) is already
available from the state equations, which is the case in the Newton iteration of DASPK, (9) needs
only one function evaluation for each sensitivity. The main drawback of this approach is that it may
be inaccurate for badly scaled problems.
The selection of the increment �i for Eq. (9) in DASPK3.0 is an improvement over the algorithms

of [14] which was suggested by Hindmarsh [10]. The increment is given by

�i = �max(|pi|; 1=‖ui‖2); (10)
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where � is a scale factor

ui =
(
WTiny+j=WT j: j = 1; : : : ; ny

)
and WT is a vector of weights determined by the relative and absolute user error tolerances and the
solution y,

WTj = RTOLj · |yj|+ATOLj:
Alternatively, the sensitivity residuals can be evaluated analytically by an automatic di�erentiation
tool such as ADIFOR [2] or other automatic di�erentiation (AD) methods. We recommend using AD
to evaluate the sensitivity equations. Even for some well-scaled problems, the ADIFOR-generated
routine has better performance in terms of e�ciency and accuracy than the �nite di�erence approx-
imation.
All of the ADIFOR-generated routines require the support of the ADIFOR library [2]. For further

information, see http:==www-unix.mcs.anl.gov=autodi�=-ADIFOR=. DASPK3.0 can be used without
the ADIFOR library, for problems where automatic di�erentiation is not needed.

4. Consistent initial condition calculation for solution and sensitivity analysis

4.1. Consistent initial conditions for index-one problems

The basic initialization technique in DASPK3.0 for index-1 problems is an extension of the method
proposed in [5]. It is applicable to two classes of index-1 initialization problems. Initialization prob-
lem I is posed for systems of the form

f(t; u; v; u′) = 0;

g(t; u; v) = 0; (11)

where u; f ∈ RNd and v; g ∈ RNa , with the matrices fu′ = @f=@u′, gv= @g=@v square and nonsingular.
The problem is to �nd the initial value v0 of v when the initial value u0 for u is speci�ed. Hence
it is required for the user to specify which variables are algebraic and which are di�erential.
In initialization problem II, which is applicable to the general index-1 system (1), the initial

derivatives are speci�ed but all of the dependent variables are unknown. That is, we must solve for
y0 given y′

0. For example, beginning the DAE solution at a steady state corresponds to specifying
y′
0 = 0.
Both of these initial condition problems are solved with the help of mechanisms already in place for

the solution of the DAE system itself, rather than requiring the user to perform a special computation.
It is also possible in DASPK3.0 to specify some of the solution variables and derivatives at the initial
time, and solve for the rest. This will be described in more detail in the next subsection.
The sensitivity problem for (11) is given by

f(t; u; v; u′; p) = 0;

g(t; u; v; p) = 0;
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@f
@u
su +

@f
@v
sv +

@f
@u′
su′ +

@f
@p

= 0;

@g
@u
su +

@g
@v
sv +

@g
@p

= 0: (12)

The algebraic variables in Eq. (11) generate algebraic sensitivity variables in Eq. (12). Eq. (12) also
has the same index as (11).
DASPK3.0 uses a staggered approach to compute the consistent initial conditions for the sensitivity

variables. First the consistent initial conditions are computed for the state variables, and then for
the sensitivity variables. It is easy to see by di�erentiating the initial conditions that the sensitivity
variables fall into the same class of initialization problems as the state variables.

4.2. Consistent initial conditions for index-two problems

With partial error control (excluding the algebraic variables from the error control), DASPK3.0
can solve Hessenberg index-2 problems with given consistent initial conditions. However, consistent
initial conditions may not be readily available in many cases. Taking the Hessenberg index-2 problem
as an example,

u′ = f(t; u; v);

0 = g(u);
(13)

the objective for index-2 initialization is to compute a new triple (û′0, û 0, v̂0) that satis�es the con-
straints and consistent initial conditions. The problem is under-determined. Following the idea of
[5] for index-1 problems, we solve the consistent initialization problem with the help of mecha-
nisms already in place for the DAE solution itself. We search for the consistent initial conditions
in the direction given by the di�erential equations. This method has a potential advantage that the
hidden constraints derived from the equations may also be satis�ed. To do that, we should incre-
ment the derivative u′ by (1=h)�u if the solution u is incremented by �u. Consider a general DAE
system

F(t; u; u′; v) = 0: (14)

After introducing two new variables �u and �v and an arti�cial time step h, we transform Eq. (14)
into

F
(
t; u0 + �u; u′0 +

1
h
�u; v0 + �v

)
= 0: (15)

Then �u and �v in (15) are computed by Newton iteration with initial values of zero. The iteration
matrix is

J =
(
1
h
Fu′ + Fu; Fv

)
; (16)

where h is chosen to be the initial step size that satis�es the error tolerance for a zeroth-order
method.
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It is easy to �x some of the di�erential variables in (15). However, �xing a di�erential variable
u does not imply �xing the derivative u′ in our algorithm, and vice versa. For example, if we �x
the �rst element u01 of the vector u in (15), the equation becomes

F
(
t; u01; u0r + �ur; u′0 +

1
h
�u; v0 + �v

)
= 0;

where u0r is the rest of u (excluding u01), and �ur is the rest of �u (excluding �u1). In the algorithm
of [5] for initialization problem I, all of the di�erential variables are �xed and Eq. (15) becomes

F
(
t; u0; u′0 +

1
h
�u; v0 + �v

)
= 0: (17)

The initialization problem II for Eq. (11) can also be cast into (15) by �xing all of the derivatives
u′, which yields

F(t; u0 + �u; u′0; v0 + �v) = 0:

As in [5], the implementation is designed so that forming the Jacobian for the initialization and
solving the nonlinear system requires no information from the user beyond what is already needed
for the time stepping.
If the constraint g(u) = 0 in (13) is satis�ed, all of the di�erential variables can be �xed and Eq.

(17) becomes

�u′ + u′0 = f(t; u0; v0 + �v);

0 = g(u0);
(18)

where �u′ = (1=h)�u. Since �u′ and �v are not related to g(u0), the iteration matrix for (18) is
singular, which means the solution is not unique. However, we can replace the constraint equation
in (18) with guu′ = 0, which yields

�u′ + u′0 = f(t; u0; v0 + �v);

0 = gu(u0)(�u′ + u′0):
(19)

It is easy to evaluate the �rst equation in (19), however the second equation is not available to
DASPK3.0. To evaluate it requires the user to specify which equations are algebraic. We can avoid
evaluating guu′=0 if f(t; u; v) is linear in v. Note that if (19) is linear with respect to u′= �u′+ u′0
and v = v0 + �v, it has a unique solution for u′ and v. The u′ and v can be solved via only one
iteration for a linear system, independent of the initial values. If we set u′0=0 and �u

′=0 in our �rst
guess, the value of the second equation in (19) is zero, which is also the result of g(u0). Therefore,
the residual evaluations can be used without modi�cation. If f(t; u; v) is nonlinear with respect to
v, then it might take more than one iteration to solve for u′ and v. Since guu′ might not be zero
during the intermediate iterations, guu′ must be evaluated in addition to the residual evaluations. If
f(t; u; v) is nonlinear with respect to v, the user can either evaluate the guu′ in the residual routine
or specify which equations are algebraic and DASPK3.0 will compute guu′ automatically, via �nite
di�erence approximation or automatic di�erentiation.
In our implementation, a linesearch backtracking algorithm [5] has been used to improve the

robustness of the Newton algorithm for the initial condition calculation.
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5. Implementation issues

5.1. Error and convergence tests

In DASPK3.0, the norm is evaluated separately for the state variables and for the sensitivities
with respect to each parameter. For the error and convergence tests, we choose the largest one
among all the norms. We have found from experience that this leads to the most robust and e�cient
implementation. It is possible to exclude sensitivity variables from the error test, but not from the
Newton iteration convergence test.

5.2. Staggered direct method

In the staggered direct method as described in Caracotsios and Stewart [6], system (6) is trans-
formed into

Jsi(n+1) =

(
− @F
@y′

n+1
� − @F

@pi

)
; (20)

where �i = s
′(0)
i(n+1) − �s(0)i(n+1) . To solve a linear system in this way requires extra storage for the matrix

@F=@y′
n+1. Moreover, this implementation often fails when the matrix J is ill-conditioned. This is

because the right-hand side of Eq. (20) can be very large and can introduce large round-o� errors
when J is ill-conditioned [12].
In DASPK3.0, the following linear system is solved for the sensitivities:

J�= Js(0)i(n+1) +
@F
@y′

n+1
�
@F
@pi

; (21)

where �= s(0)i(n+1) − si(n+1) . The right-hand side of (21) is easy to obtain in DASPK3.0 by evaluation of
the sensitivity equations. It does not require any extra storage or special handling. What is important
is that it works well for ill-conditioned problems. This is because the right-hand side of Eq. (21) is
usually much smaller than that of Eq. (20) for a successful step (which means the predicted value
s(0) is close enough).

5.3. Krylov method

Since the sensitivity equations are linear with respect to the sensitivity variables, Newton iteration
is not necessary for the staggered method. Therefore the staggered corrector method and staggered
direct method are the same for the preconditioned Krylov iteration. The matrix–vector product Jvsi
is evaluated directly via directional derivative �nite di�erence approximation

Jvsi = (�Fy′ + Fy)vsi

≈ F(t; y + �vsi ; �(y + �vsi) + �; p)− F(t; y; �y + �; p)
�

; (22)

where F(t; y′; y; p) are the state equations. The function evaluations in (22) involve only the state
equations. Because there is no coupling between di�erent sensitivity variables, the linear iteration for
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each sensitivity equation can be done separately, which allows us to split the large linear system into
several small ones and reduce the length of each orthonormal basis to the number of state variables.
For the simultaneous corrector method, we approximate the Newton–Krylov iteration matrix by its
block diagonal as for the direct method. Then (22) can be used to calculate the matrix–vector
product.
One might consider replacing all �nite di�erencing with ADIFOR-generated routines. However,

this does not turn out to be a good idea for the Krylov iteration. There is a trade-o� when we
consider the e�ciency and accuracy of the computations. The ADIFOR-generated routine not only
computes the derivatives but also the original functions. To compute one matrix–vector product in an
ADIFOR-generated routine requires at least one evaluation of the original function and possibly more
than one evaluation of the derivatives. But the matrix–vector product approximated by �rst-order
�nite di�erence requires only one evaluation of the original functions. Since the �nite di�erence
approximation in the matrix–vector product for the Krylov iteration has the scaling incorporated into
its implementation, in practice it has been quite robust.

6. Parallel implementation of DASPK for sensitivity analysis

Several parallel implementations for sensitivity analysis of DAEs via message-passing interface
(MPI) [7] have been compared in [15]. In this section, we describe the parallelization in DASPK3.0.
Although all the tests in [15] are for DASSL with the direct method, the comparative results are
similar for DASPK3.0 with both the direct method and the Krylov method with the new implemen-
tation described in Section 5.3. We have found that the distributed parameter only (DPO) approach
of [15] is also the fastest for DASPK3.0.
Our implementation distributes the sensitivity parameters inside the DASPK code so as to reduce

the burden on the user. To balance the workload between processors, we allocate the parameters
randomly to each processor: if we have NP processors and NPAR parameters, N = NPAR=NP, we
distribute parameter numbers

j; : : : ; j + i ∗ NP; : : : ; j + N ∗ NP if j6mod(NPAR; NP);

j; : : : ; j + i ∗ NP; : : : ; j + (N − 1) ∗ NP if j¿mod(NPAR; NP);
(23)

to the jth processor. Each processor computes the state variables locally, and the Jacobian matrix is
also computed and factorized locally when needed. To minimize the storage and memory require-
ments in each processor, we assume that each processor has distributed memory, i.e., each processor
has a local value of the same variable. Therefore, the work space in each processor can be reduced
to approximately 1=NP of the total work space. Since the sensitivities are independent of each other,
each processor can work independently without communicating with the others.
We have attempted to develop software for which both parallel and serial computation can run

e�ciently. We enforce the same step size control for all the processors in the parallel implementation.
The communication overhead is very small. In each time step, each processor may be using di�erent
orders of the BDF formulae. Since this implementation requires an MPI-related routine and the
support of the MPI library, which may not be accessible by users doing serial computation, we
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provide a dummy routine which can be linked without involving the MPI library, for use with serial
computation

7. Numerical experiments

In this section we describe several numerical experiments. All tests were run on an SGI O2
workstation. The following quantities are used to compare di�erent methods:

METH Integration method
NSTP Number of time steps used
NRES Number of calls to residual subroutine
NSE Number of sensitivity evaluations
NJAC Number of Jacobian evaluation
NNI Number of nonlinear iterations
NLI Number of linear iterations (only for Krylov method)
CPU The total cpu time taken to solve the problem

The integration methods we use include the direct method (D) and Krylov method (K). The
integration methods for the sensitivity equations include the staggered corrector method (ST), the
staggered direct method (SD) and simultaneous corrector method (SI). Therefore we use STD to
represent the staggered corrector direct method, STK to represent the staggered corrector Krylov
method, SID to represent the simultaneous corrector direct method, SIK to represent the simultaneous
corrector Krylov method, and SDK to represent the staggered direct Krylov method.
The �rst example models a multi-species food web [5], in which mutual competition and=or

predator–prey relationships in the spatial domain are simulated. Speci�cally, the model equations for
the concentration vector c = (c1; c2)T are

c1t = f1(x; y; t; c) + (c
1
xx + c

1
yy);

0 = f2(x; y; t; c) + 0:05(c2xx + c
2
yy)

with

fi(x; y; t; c) = ci

bi + 2∑

j=1

aijcj

 :

The coe�cients aij; bi are

a11 = a22 =−1; a12 =−0:5 · 10−6; a21 = 104;

b1 =−b2 = 1 + �xy + � sin(4�x) sin (4�y):
The domain is the unit square 06x; y61 and 06t610. The boundary conditions are of Neumann
type with normal derivative equal to 0. The PDEs are discretized by central di�erencing on an
M × M mesh, for M = 20. Therefore the resulting DAE system has size NEQ = 2M 2 = 800. The
tolerances used were RTOL = ATOL = 10−5.
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Table 1
Results for multi-species food web. The upper part is for the ADIFOR option with error control including the algebraic
variables. The middle part is for the ADIFOR option with error control excluding the algebraic variables. The bottom part
is for the �nite di�erence option with error control excluding the algebraic variables

METH NSTP NRES NSE NJAC NNI NLI NLIS NETF CPU

STD 312 770 389 45 381 0 0 4 30.84
SID 335 508 508 42 508 0 0 3 36.56
STK 341 2712 353 36 406 732 0 1 22.98
SIK 505 4262 617 47 617 1532 0 9 39.12

STD 128 377 190 42 205 0 0 0 17.90
SID 128 228 228 40 228 0 0 0 18.91
STK 133 1456 147 38 165 329 425 0 11.36
SIK 131 1888 202 38 202 332 697 0 15.47
SDK 133 1442 133 38 165 329 425 0 11.03

STD 128 3589 190 42 187 0 0 0 24.85
SID 128 3240 228 40 228 0 0 0 26.11
STK 133 1442 147 38 165 329 425 0 10.36
SIK 131 1818 201 38 201 332 700 0 14.37
SDK 133 1442 133 38 165 329 425 0 10.12

For sensitivity analysis, � and � were taken as the sensitivity parameters with initial values �=50
and � = 100. The initial conditions were taken as

c1 = 10 + (16x(1− x)y(1− y))2;
c2 = 105;

which does not satisfy the constraint equations. The initial conditions for the sensitivity variables
were taken as zero, which are not consistent either. We solved this problem with both the direct
and Krylov methods. For the Krylov methods, we used the block-grouping preconditioner (which is
included in the package DASPK2.0 [5]). To eliminate the e�ect of �nite di�erencing when comparing
di�erent methods, we used the ADIFOR option in DASPK3.0 to generate the Jacobian matrix (only
for the direct method) and sensitivity equations. Without initialization, the integration failed because
of too many convergence test failures. The consistent initial conditions were computed quickly with
both the direct and Krylov methods. Table 1 shows the results of the staggered corrector method and
the simultaneous corrector method. Full error control (including the sensitivity variables) was used.
Although there were no convergence test failures for this problem, the staggered corrector method
(ST) performed better than the simultaneous corrector method (SI).
The �nite di�erencing options for the sensitivity equations were also tested. We used the central

di�erence and �= 10−3 (default value). The results are shown in Table 1.
The next example is the heat equation,

@u
@t
= p1uxx + p2uyy;
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Table 2
Results for heat equation with ADIFOR evaluation. The upper half is for partial error control (excluding the sensitivity
variables). The bottom half is for full error control

METH NSTP NRES NSE NJAC NNI NLI NETF CPU

STD 64 160 65 22 95 0 3 36.20
SID 64 97 97 22 97 0 3 46.35
STK 71 1527 72 18 100 149 1 25.67
SIK 71 1572 102 18 102 184 1 29.40

STD 92 220 103 23 123 0 2 53.58
SID 93 130 130 25 130 0 3 63.63
STK 106 1823 114 24 141 182 2 35.68
SIK 116 1776 155 24 155 213 2 39.06

Table 3
Results for heat equation with �nite di�erence approximation for sensitivities and full error-control

METH NSTP NRES NSE NJAC NNI NLI NETF CPU

STD 92 2118 103 23 117 0 2 64.07
SID 93 2175 130 25 130 0 3 75.76
STK 107 3917 114 24 143 187 2 38.39
SIK 116 3695 157 24 157 207 2 44.24

where p1=p2=1:0, posed on the 2-D unit square with zero Dirichlet boundary conditions. An M+2
by M + 2 mesh is set on the square, with uniform spacing 1=(M + 1). The spatial derivatives are
represented by standard central �nite di�erence approximations. At each interior point of the mesh,
the discretized PDE becomes an ODE for the discrete value of u. At each point on the boundary,
we pose the equation u=0. The discrete values of u form a vector U , ordered �rst by x, then by y.
The result is a DAE system G(t; U; U ′) = 0 of size (M + 2)× (M + 2). Initial conditions are posed
as

u(t = 0) = 16x(1− x)y(1− y):
The problem was solved by DASPK3.0 on the time interval [0; 10:24] with M =40. To compute the
sensitivities, we took 10 sensitivity parameters; p1 and p2 were two of them. The other eight were
chosen from the initial conditions. The error tolerances for DASPK are RTOL=ATOL= 1:0D− 4.
For the direct method, we used ADIFOR with SparsLinC to generate the Jacobian. For the Krylov
method, we used the incomplete LU (ILU) preconditioner, which is part of the DASPK package.
The Jacobian for the ILU preconditioner was evaluated by ADIFOR with SparsLinC. The sensitivity
residuals were evaluated by ADIFOR with the seed matrix option. Table 2 gives the results of the
staggered corrector and simultaneous corrector methods.
Because this problem is linear and well scaled, �nite-di�erencing in the Jacobian and=or sensitivity

equation evaluation gets a good result. Table 3 shows the results when central di�erencing is used for
evaluation of the sensitivity equations. The default perturbation factor (10−3) is used in evaluating
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Table 4
Results for heat equation with �nite di�erence approximation and partial error-control. MPI was used in all the parallel
computations. The same step size control was enforced on all the processors

METH NPROC NSTP NRES NJAC NNI NLI CPU

1 64 1810 19 91 0 35.33
Direct 2 19.64

4 12.50
8 8.78

1 71 3410 18 100 181 24.59
Krylov 2 71 1935 18 100 159 12.94

4 71 1109 18 100 160 7.43
8 71 696 18 100 156 4.75

the sensitivity equations. The Jacobian is also evaluated by �nite-di�erencing. Only the data for full
error-control are listed.
We tested DASPK3.0 on a cluster of DEC alpha machines at Los Alamos National Laboratory.

Each processor is 533 MHz with 64 MB memory. The heat equation with 24 sensitivity parameters
was used as the test problem. The staggered corrector method was used. The synchronization to
achieve the same step size on each processor does not introduce much overhead to the computation,
as shown in Table 4.
The next example models a single pendulum

y′
1 = y3;

y′
2 = y4;

y′
3 =−y1y5;

y′
4 =−y2y5 − g;

0 = y1y3 + y2y4;

where g=1:0. This is an index-two problem. The initial conditions are y1=0:5; y2=−
√
p2 − y21 ; y3=

10:0; y4 = 10:0; and y5 = 0:0. The sensitivity parameter is p, which has initial value p = 1:0. The
initial conditions for the sensitivity variables are (0:0;−1:1547; 0:0; 0:0; 0:0). All of the derivatives
were set to 0 initially. The tolerance for DASPK was taken as RTOL = ATOL = 10−6. Because

g(y) = y1y3 + y2y4 =−3:660254 6= 0;
the consistent initial conditions were �rst computed via the initialization algorithm for index-2 prob-
lems. During the initial condition computation, we monitored three constraints,

g1 = y21 + y
2
2 − p;

g2 = y1y3 + y2y4;

g3 = y23 + y
2
4 − (y21 + y22)y5 − y2:
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Table 5
Results for consistent initial conditions for pendulum problem

Fixed y1 y2 y3 y4 g1 g2 g3

No 0.512 −0:859 11.777 7.016 −1:88e− 4 0.0 3:77e− 15
y1; y2 0.5 −0:866 11.83 6.83 −1:1e− 16 0.0 9:28e− 13

Initially, we have

g1 = 0; g2 =−3:66; g3 = 200:866:

We also tried to �x y1; y2 during the experiments on the initial condition computation. The results
are shown in Table 5. Note that if y1 and y2 are not �xed, g1 may be violated.
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